skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kazmierczak, Nathanael P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electron spin superpositions represent a critical component of emergent quantum technologies in computation, sensing, encryption, and communication. However, spin relaxation (T1) and decoherence (Tm) represent major obstacles to the implementation of molecular quantum bits (qubits). Synthetic strategies have made substantial progress in enhancing spin coherence times by minimizing contributions from surrounding electron and nuclear spins. For room-temperature operation, however, the lifetime of spin coherence becomes limited by coupling with vibrational modes of the lattice. Using pulse electron paramagnetic resonance (EPR) spectroscopy, we measure the spin-lattice relaxation of a vanadyl tetrapyrazinoporphyrazine complex appended with eight peripheral 2,6-diisopropylphenol groups (VOPyzPz-DIPP) and compare it to the relaxation of the archetypical vanadyl phthalocyanine molecular qubit (VOPc). The added peripheral groups lead to distinctly different spin relaxation behavior. While similar relaxation times are observed at low temperatures and ambient conditions, significant changes are observed for the orientation dependence of T1at 100 K, as well as the temperature dependence of T1over the intermediate temperature range spanning [Formula: see text]10–150 K. These results can be tentatively interpreted as arising from loosened spin-phonon coupling selection rules and a greater number of accessible acoustic and optical modes contributing to the spin relaxation behavior of VOPyzPz-DIPP relative to VOPc. 
    more » « less